1.2. Erzeugung von Wechselspannungen

$$\hat{u}_i = N \cdot B \cdot 2l \cdot \omega \cdot r \qquad \omega = 2 \cdot \pi \cdot n \qquad \text{mit n als Drehzahl}$$

1.3. Die Sinusschwingung; formale Begriffe (DIN 1311)

$$T = \frac{2\pi}{\omega}$$
 Einheit: $[f] = 1\frac{1}{s} = 1$ Hertz = 1 Hz (kHz, MHz, GHz)
Kreisfrequenz ω :
$$\omega = \frac{2\pi}{T} = 2\pi \cdot f$$
 Einheit: $[\omega] = \frac{1}{s}$

1.5. Phase, Phasenverschiebung, Voreilen, Nacheilen

$$u = \hat{u} \cdot \sin(\omega \cdot t + \varphi)$$

1.6. Mittelwerte periodischer Funktionen, Formfaktor, Scheitelfaktor

Effektivwert
$$I = \sqrt{\frac{1}{T} \int_{0}^{T} i(t)^{2} dt}$$

$$I = \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} i(\omega \cdot t)^{2} d(\omega \cdot t)^{2}}$$

Die Gleichung gilt auch für die Spannung U

$$I = \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} i(\omega \cdot t)^{2} d(\omega \cdot t)}$$

arithmetischer Mittelwert (linearer Mittelwert)

$$\bar{i} = \frac{1}{T} \int_{0}^{T} i(t)dt$$
$$\bar{i} = \frac{1}{2\pi} \int_{0}^{2\pi} i(\omega \cdot t) d(\omega \cdot t)$$

Gleichrichtwert

$$\overline{|i|} = \frac{1}{T} \int_{0}^{\infty} |i(t)| dt$$

$$\overline{|i|} = \frac{1}{2\pi} \int_{0}^{2\pi} |i(\omega \cdot t)| d(\omega \cdot t)$$

Scheitelfaktor

$$\sigma_S = \frac{\hat{i}}{I}$$
 and

auch Crestfaktor

Formfaktor

$$\sigma_F = \frac{I}{|i|}$$

2.0. Wechselstromwiderstände

2.1. Der ohmsche Widerstand

$$I = \frac{U}{R}$$

$$p(\omega \cdot t) = U \cdot I \cdot [1 - \cos(2\omega \cdot t)]$$

Der Momentanwert der Leitung ändert sich mit doppelter Frequenz

Mittelwert der Leitung P
$$P = U \cdot I = I^2 \cdot R = \frac{U^2}{R}$$

 $p(\omega \cdot t)$ pulsiert um den Mittelwert $P = U \cdot I$ Energie in R für eine Periode $W = I^2 \cdot R \cdot T$

2.2. Der induktive Widerstand X_{I}

$$\omega \cdot L = \frac{U}{I}$$

$$X_L = \omega \cdot L = 2\pi \cdot f \cdot L$$

X, ...induktiver Widerstand, induktiver Blindwiderstand oder induktive Reaktanz

$$B_L = -\frac{1}{X_L} = -\frac{1}{\omega \cdot L}$$
 B_L ...induktiver Leitwert, induktiver Blindleitwert oder induktive Suszeptanz

An einer idealen Induktivität sind Strom und Spannung um 90° phasenverschoben, der Strom eilt der Spannung um 90° nach

Leistungsbetrachtung

$$p(\omega \cdot t) = U \cdot I \cdot \sin(2\omega \cdot t)$$

Mittlere Leistung

P = 0

2.3. Der kapazitive Widerstand X_c

$$I = \omega \cdot C \cdot U \qquad B_C = \omega \cdot C = 2\pi \cdot f \cdot C$$

R_a...kapazitiver Leitwert, kapazitiver Blindleitwert oder kapazitive Suszeptanz

$$X_C = -\frac{1}{B_C} = -\frac{1}{\omega \cdot C}$$

X_o ...kapazitiver Widerstand, kapazitiver Blindwiderstand oder kapazitive Reaktanz

An einer idealen Kapazität sind Strom und Spannung um 90° phasenverschoben, die Spannung eilt den Strom um 90° nach

Leistungsbetrachtung

$$p(\omega \cdot t) = U \cdot I \cdot \sin(2\omega \cdot t)$$

Mittlere Leistung

2.4. Darstellung der Wechselstromwiderstände als Widerstandoperatoren

$$u(t) = i \cdot R + L \frac{di}{dt}$$

Gegeben wird:
$$i(t) = \hat{i} \cdot \sin(\omega \cdot t) \Rightarrow \overline{u(t) = \hat{i} \cdot R \cdot \sin(\omega \cdot t) + \hat{i} \cdot \omega \cdot L \cdot \cos(\omega \cdot t)}$$

$$Z = \sqrt{R^2 + X_L^2}$$

$$\varphi = \arctan \frac{X_L}{R}$$

$$R = Z \cdot \cos \varphi$$

$$X_L = Z \cdot \sin \varphi$$

Spannungsdreieck

$$U = \sqrt{U_R^2 + U_L^2} \qquad \varphi = \arctan \frac{U_L}{U_R} \qquad U_R = U \cdot \cos \varphi \qquad U_L = U \cdot \sin \theta$$

Ohmsches Gesetz beim Wechselstrom

$$U = I \cdot Z$$
 $I = U \cdot Y$ $Y = \frac{1}{Z}$

Reihenschaltung von R und C

$$u(t) = i \cdot R + \frac{1}{C} \int i \cdot dt + K$$

Gegeben wird:
$$i(t) = \hat{i} \cdot \sin(\omega \cdot t) \Rightarrow u(t) = \hat{i} \cdot R \cdot \sin(\omega \cdot t) - \frac{\hat{i}}{\omega \cdot C} \cdot \cos(\omega \cdot t)$$

Widerstandsdreieck

$$Z = \sqrt{R^2 + X_C^2} \qquad \varphi = \arctan \frac{X_C}{R} \qquad \varphi \text{ ist negativ, da } X_C \text{ negativ}$$

Reihenschaltung von R,L und C

$$u(t) = i \cdot R + L \frac{di}{dt} + \frac{1}{C} \int i \cdot dt + K$$

$$\Rightarrow u(t) = \hat{i} \cdot R \cdot \sin(\omega \cdot t) + \hat{i} \cdot \omega \cdot L \cdot \cos(\omega \cdot t) - \frac{\hat{i}}{\omega \cdot C} \cdot \cos(\omega \cdot t)$$

Gegeben wird:
$$i(t) = \hat{i} \cdot \sin(\omega \cdot t) \Rightarrow u(t) = \hat{i} \cdot R \cdot \sin(\omega \cdot t) + \hat{i} \cdot \omega \cdot L \cdot \cos(\omega \cdot t) - \frac{\hat{i}}{\omega \cdot C} \cdot \cos(\omega \cdot t)$$

Widerstandsdreieck
$$Z = \sqrt{R^2 + (X_L + X_C)^2} \qquad \varphi = \arctan \frac{X_L + X_C}{R} \qquad (X_C \text{ negativ!})$$

Resonanzfrequenz
$$f_j$$

$$f_r = \frac{1}{2\pi} \cdot \frac{1}{\sqrt{L \cdot C}}$$

2.5. Schaltungen von Wechselstromwiderständen

Reihenschaltung

$$\underline{Z}_{ges} = \sum_{\nu=1}^{n} \underline{Z}_{\nu}$$

Parallelschaltung

$$\boxed{\underline{Y}_{ges} = \sum_{\nu=1}^{n} \underline{Y}_{\nu}} Y = \sqrt{\left(\frac{1}{R}\right)^{2} + \left(\omega \cdot C - \frac{1}{\omega \cdot L}\right)^{2}} \qquad Y = \sqrt{G^{2} + B^{2}}$$

$$\varphi = \arctan \frac{\omega \cdot C - \frac{1}{\omega \cdot L}}{G}$$

2.6. Reihen und Parallelschaltung

$$R_S = Z \cdot \cos \varphi$$
 $R_P = \frac{Z}{\cos \varphi}$ $X_{LS} = Z \cdot \sin \varphi$ $X_{LP} = \frac{Z}{\sin \varphi}$

2.7. Wechselstromleistung im Einphasensystem

$$p(t) = U \cdot I \cdot \left[\cos \varphi - \cos(2\omega \cdot t + \varphi)\right]$$

φ ist des Winkel zwischen U und I

Mittelwert P $P = U \cdot I \cdot \cos \varphi$

Leistungsbegriffe

Scheinleistung S Blindleistung Q

$$S = U \cdot I$$

$$Q = U \cdot I \cdot \sin \varphi$$

Leistungsfaktor/Wirkfaktor co

$$S = \sqrt{P^2 + Q^2}$$

- 3. Die Komplexe Rechnung in der Wechselstromtechnik
- 3.2. Anwendung der komplexen Rechnung auf die Darstellung von sinusförmigen Strom und Spannung

$$\frac{\sqrt{2} \cdot U \cdot e^{j\varphi_u} = \hat{\underline{u}}}{\sqrt{2} \cdot U \cdot e^{j\varphi_u} = \hat{\underline{u}}} \left[u(t) = \frac{1}{2} \left(\sqrt{2} \cdot U \cdot e^{j\varphi_u} \cdot e^{j\omega \cdot t} + \sqrt{2} \cdot U \cdot e^{-j\varphi_u} \cdot e^{-j\omega \cdot t} \right) = \frac{1}{2} \left(\hat{\underline{u}} \cdot e^{j\omega \cdot t} + \hat{\underline{u}}^* \cdot e^{-j\omega \cdot t} \right) \right]$$

$$u(t) = \text{Re} \left(\sqrt{2} \cdot \underline{U} \cdot e^{j\omega \cdot t} \right)$$

3.3. Anwendung der komplexen Rechnung auf die Darstellung der Wechselstromwiderstände und Wechselstromleitwerte

$$\underline{Z} = R + jX = Ze^{j\varphi_z} \qquad \underline{Y} = G + jB = Ye^{j\varphi_y}$$
Reihenschaltung von R und L
$$\underline{Z} = R + j\omega \cdot L$$
Reihenschaltung von R und C
$$\underline{Z} = R + \frac{1}{j\omega \cdot C}$$
Reihenschaltung von R,L und C
$$\underline{Z} = R + \frac{1}{j\omega \cdot C}$$

Parallelschaltung von R,L und C

$$\underline{Y} = \frac{1}{R} + j\left(\omega \cdot C - \frac{1}{\omega \cdot L}\right) \qquad Y = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\omega \cdot C - \frac{1}{\omega \cdot L}\right)^2}$$

3.4. Leistung in komplexer Form

$$\underline{S} = \underline{U} \cdot \underline{I}^*$$
 (oder $\underline{S} = \underline{U}^* \cdot \underline{I}$)

$$P = \text{Re}(\underline{S}) = U \cdot I \cdot \cos(\varphi_u - \varphi_i)$$

$$Q = \text{Im}(\underline{S}) = U \cdot I \cdot \sin(\varphi_u - \varphi_i)$$

3.5. Leistungsanpassung bei Wechselstrom

$$\overline{R_{v} = R_{i} \quad X_{v} = -X_{i}} \quad \overline{\underline{Z}_{v} = \underline{Z}_{i}^{*} \quad Z_{v} = Z_{i} \quad \varphi_{v} = -\varphi_{i}} \quad P_{v \max} = \frac{U_{q}^{2}}{4 \cdot R_{i}} \quad \eta = 50\%$$

- 4. Mehrphasige Wechseltröme
- 4.1. Das symmetrishe Dreiphasensystem (Drehstromsystem)

Drei um 120° zeitlich phasenverschobene Spannungen

Momentanwerte

$$u_1 = \hat{u}_1 \cdot \sin(\omega \cdot t + \alpha)$$

$$u_2 = \hat{u}_2 \cdot \sin(\omega \cdot t - 120^\circ + \alpha)$$

$$u_3 = \hat{u}_3 \cdot \sin(\omega \cdot t - 240^\circ + \alpha)$$

Aufgrund der Gleichheit der Winkelstränke folgt $\hat{u}_1 = \hat{u}_2 = \hat{u}_2 = \hat{u}_2 = \hat{u}_2 = \sqrt{2} \cdot U$

Symmetrisches Dreiphasensystem:

- a) alle Strangspannungen sind gleich groß
- b) die gegenseitige Phasenverschiebung beträgt 120°

Im Dreiphasensystem ist die Summe der drei Spannungen in jeden Augenblick Null

 $\sum_{\nu=1}^3 u_{\nu} = 0$

Phasenfolge:

Die Phasenfolge bezeichnet die Reihenfolge, in der die Zeiger an einem ruhenden Beobachter vorbeidrehen.

Sternschaltung

$$\begin{array}{ll} \underline{U}_{12} = \underline{U}_1 - \underline{U}_2 \\ \underline{U}_{23} = \underline{U}_2 - \underline{U}_3 \\ \underline{U}_{31} = \underline{U}_3 - \underline{U}_1 \end{array} \qquad \begin{array}{ll} \underline{U}_{12}, \underline{U}_{23}, \underline{U}_{31} \dots \text{Außenleiterspannungen} \\ \underline{U}_1, \underline{U}_2, \underline{U}_3 \dots \dots \text{Strang- oder Sternspannungen} \end{array}$$

allgemein

$$\boxed{U_{{\scriptscriptstyle AL}} = \sqrt{3} \cdot U_{{\scriptscriptstyle Strg}}} \qquad \boxed{I_{{\scriptscriptstyle AL}} = I_{{\scriptscriptstyle Strg}}}$$

Komplexe Schreibweise im symmetrischen Drehstromnetz bei symmetrischen Stern-Verbraucher

4.2 Symmetrisches Dreiphasensystem mit unsymmetrischer Belastung

Unsymmetrische Belastung in Sternschaltung ohne Verbindung der Sternpunktleiter

$$\underline{\underline{U}'} = \underline{\underline{U}_1 \cdot \underline{Y}_u + \underline{U}_2 \cdot \underline{Y}_v + \underline{U}_3 \cdot \underline{Y}_w}_{\underline{Y}_u + \underline{Y}_v + \underline{Y}_w} \quad \text{bei } \underline{Y}_u = \underline{Y}_v = \underline{Y}_w \Rightarrow \underline{U}' = 0 \quad \text{(symmetrische Belastung)}$$

Sind Z₁, Z₁ nicht vernachlässigbar, sind sie zu den jeweiligen Strangwiderständen hinzuzurechnen.

4.3 Leistungsmessung im Dreiphasensystem

4.3.1 Momentanwert der Leistung im symmetrischen Dreiphasensystem, Mittelwert

Gesamtwert der Momentanleistung

$$p_{3\sim} = p_u + p_v + p_w = 3 \cdot U_{Strg} \cdot I_{Strg} \cdot \cos \varphi$$
 ϕ ...Winkel zwischen Strom und Spannung

Mittelwert der Leistung

$$P = 3 \cdot P_{Strg} = 3 \cdot U_{Strg} \cdot I_{Strg} \cdot \cos \varphi$$

$$P = \sqrt{3} \cdot U_{Al} \cdot I_{AL} \cdot \cos \varphi$$

$$Q = \sqrt{3} \cdot U_{Al} \cdot I_{AL} \cdot \sin \varphi$$

$$S = \sqrt{3} \cdot U_{Al} \cdot I_{AL}$$

bei unsymmetrischer Belastung gilt

$$P = P_u + P_v + P_w$$

4.3.2. Leistungsmeßung im Dreiphasensystem

symmetrische Belastung

$$P = 3 \cdot P_{Strg} = 3 \cdot U_{Strg} \cdot I_{Strg} \cdot \cos \varphi$$

unsymmetrische Belastung

Übergang auf die komplexe Schreibweise

$$\underline{S} = \underline{U}_{12} \cdot \underline{I}_{1}^{*} + \underline{U}_{32} \cdot \underline{I}_{3}^{*}$$

$$P = \operatorname{Re}(\underline{S}) = U_{12} \cdot I_{1} \cdot \cos \varphi_{12} + U_{32} \cdot I_{3} \cdot \cos \varphi_{32}$$

$$Q = \operatorname{Im}(\underline{S}) = U_{12} \cdot I_{1} \cdot \sin \varphi_{12} + U_{32} \cdot I_{3} \cdot \sin \varphi_{32}$$

Die Gleichung wird bei symmetrischer Belastung zu

$$P = U_{AL} \cdot I_{Al} \cdot \cos(\varphi + 30^{\circ}) + U_{AL} \cdot I_{AL} \cdot \cos(\varphi - 30^{\circ})$$

Bestimmung des tan φ bei symmetrischer Belastung bzw. der Blindleistung Q

$$P_1' = U_{AL} \cdot I_{Al} \cdot \cos(\varphi + 30^\circ)$$
$$P_3' = U_{AL} \cdot I_{AL} \cdot \cos(\varphi - 30^\circ)$$

$$\varphi = \arctan\left(\sqrt{3} \frac{P_3' - P_1'}{P_1' + P_3'}\right)$$

$$Q = \sqrt{3} \cdot \left(P_3' - P_1' \right)$$

4.4. Der komplexe Operator a

$$\underline{a} = e^{j120^{\circ}} = -\frac{1}{2} + j\frac{1}{2}\sqrt{3}$$

$$\underline{a}^{2} = e^{j240^{\circ}} = -\frac{1}{2} - j\frac{1}{2}\sqrt{3}$$

$$\underline{a}^{3} = e^{j360^{\circ}} = 1$$

Zusammenhang der Strangspannungen

$$\underline{U}_1 = \underline{a} \cdot \underline{U}_2 = \underline{a}^2 \cdot \underline{U}_3 \\
\underline{U}_2 = \underline{a} \cdot \underline{U}_3 = \underline{a}^2 \cdot \underline{U}_1 \\
\underline{U}_3 = \underline{a} \cdot \underline{U}_1 = \underline{a}^2 \cdot \underline{U}_2$$

5. Zweipole und Vierpole (Ersatzschaltung und Frequenzverhalten)

5.1. Zweipole

$$\underline{Z} = R + jX = Z \cdot e^{j\varphi}$$

$$Y = G + jB = Y \cdot e^{j\varphi_Y}$$

-	
induktiver Zweipol:	kapazitiver Zweipol:
X und φ_Z sind positiv	X und φ_Z sind negative
B und φ_v sind negativ	B und φ_v sind positiv

Umwandlung von Parallel- in Reihenschaltung bei fester Frequenz

a) induktiver Zweipol

$$\frac{R_r}{R_p} = \cos^2 \varphi$$

$$\frac{L_r}{L_p} = \sin^2 \varphi$$

$$R_r = \frac{R_p}{1 + \left(\frac{R_p}{\omega \cdot L_p}\right)^2} \qquad L_r = \frac{L_p}{1 + \left(\frac{\omega \cdot L_p}{R_p}\right)^2}$$

b) kapazitiver Zweipol

$$R_p = R_r \left[1 + \frac{1}{\left(\omega \cdot C_r R_r\right)^2} \right] \qquad C_p = \frac{C_r}{1 + \left(\omega \cdot C_r R_r\right)^2}$$

5.2. Duale Schaltungen

Dualitätsbedingung

$$\underline{Z}_1 \cdot \underline{Z}_2 = R_D^2$$

R₀...Dualitätskonstante, reelle Konstante, Dimension eines Widerstandes, frequenzunabhängig Dual oder Widerstandsreziprok:

Der Scheinwiderstand des einen Netzwerkes verhält sich genauso wie der Scheinleitwert des anderen und umgekehrt.

Duale Schaltungen haben gleiche Zeigerbilder und Ortskurven für Y und Z

5.3. Lineare Vierpole

a) Widerstandsform, Z-Parameter

$$\underline{U}_2 = \underline{I}_1 \cdot \underline{Z}_{21} + \underline{I}_2 \cdot \underline{Z}_{22}$$

b) Leitwertform, Y-Parameter

$$\underline{I}_1 = \underline{U}_1 \cdot \underline{Y}_{11} + \underline{U}_2 \cdot \underline{Y}_{12}
\underline{I}_2 = \underline{U}_1 \cdot \underline{Y}_{21} + \underline{U}_2 \cdot \underline{Y}_{22}$$

c) Kettenform, Kettenparameter

$$\underline{U}_1 = \underline{U}_2 \cdot \underline{A}_{11} + (-\underline{I}_2) \cdot \underline{A}_{12}$$
$$\underline{I}_1 = \underline{U}_2 \cdot \underline{A}_{21} + (-\underline{I}_2) \cdot \underline{A}_{22}$$

Ersatzschaltung von Vierpolen:

Jeder passive Vierpol kann durch ein T- bzw. π- Ersatzschaltbild dargestellt werden, das jeweils aus drei Widerständen besteht. Beide Schaltungen können durch eine Stern-Dreieck-Umwandlung ineinander überführt werden. Sie sind untereinander gleichwertig,. Aber immer nur für eine feste Frequenz.

- 6. Gekoppelte Kreise
- 6.1. Definition
- 6.2. Gegeninduktivität und Streuung

$$M_{12} = \frac{N_2 \cdot \Phi_{12}}{I_1} \qquad M_{21} = \frac{N_1 \Phi_{21}}{I_2}$$
 bei μ = konstant gilt $M_{12} = M_{21} = M$ (M...Gegeninduktivität)

Streufaktor σ und Kopplungsfaktor k

M...Gegeninduktivität

$$k_m = \sqrt{\frac{\Phi_{12}}{\Phi_1} \cdot \frac{\Phi_{21}}{\Phi_2}} = \frac{M}{\sqrt{L_1 \cdot L_2}}$$

$$\sigma = 1 - k_m^2 = 1 - \frac{M^2}{L_1 \cdot L_2}$$

$$M = \frac{N_1 \cdot N_2}{R_{mk}}$$

Gesamtflüsse in den Spulen bei gekoppelten Kreisen (Stromfluß in beiden Wicklungen):

$$\psi_1 = L_1 \cdot I_1 \pm M \cdot I_2$$

$$\psi_2 = L_2 \cdot I_2 \pm M \cdot I_1$$

+...Flüsse unterstützen sich -...Flüsse wirken gegeneinander

6.3. Induktive Kopplung

$$u_1 = i_1 \cdot R_1 + L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt}$$

(+) oder (-) richtet sich nach der Richtung der Einzelflüsse

$$u_2 = i_2 \cdot R_2 + L_2 \frac{di_2}{dt} \pm M \frac{di_2}{dt}$$

Bedeutung der Punkte an Spulen

Von gleichem Strom verursachte Spannungen haben gleiche Bezugsrichtung relativ zu den Punkten. Physikalisch heißt das:

 U_M erhält die gleiche Bezugsrichtung wie U_M , wenn positive Ströme in beiden Wicklungen gleichsinnige Flüsse hervorrufen.

$$P_{M} = \text{Re}(\underline{U}_{M2} \cdot \underline{I}_{2}^{*}) \qquad P_{M} = \text{Re}(\underline{U}_{M1} \cdot \underline{I}_{1}^{*})$$

6.4. Schaltung von Induktivitäten

a) Reihenschaltung

ohne magnetische Kopplung

mit magnetische Kopplung

$$L_{ges} = \sum_{\nu=1}^{n} L_{\nu}$$

$$L_{ges} = L_{1} + L_{2} \pm 2 \cdot M$$

(+)...Unterstützung der Flüsse

(-)...Flüsse entgegengesetzt

Meßtechnische Bestimmung von M

$$M = \frac{L_{ges+} - L_{ges-}}{4}$$

 L_{ges-} ...bei Subtraktion der Flüsse

 $L_{\alpha\rho\varsigma+}$...bei Addition der Flüsse

b)Parallelschaltung

ohne magnetische Kopplung

mit magnetische Kopplung

$$L_{ges} = \sum_{\nu=1}^{1} \frac{1}{L_{\nu}}$$

$$L_{ges} = \frac{L_{1} \cdot L_{2} - M^{2}}{L_{1} + L_{2} \mp 2 \cdot M}$$

(-)...gilt bei Addition der Flüsse

(+)...gilt bei Subtraktion der Flüsse

6.5. Eingangswiderstand bei gekoppelten Kreisen

a) Reihenschaltung
$$Z_E = Z_1 + Z_2 \pm Z_1$$

(+)...Flüsse addieren sich

(-)...Flüsse wirken entgegengesetzt

b) Parallelschaltung

(-)...Flüsse addieren sich (+)...Flüsse wirken gegeneinander

6.6. Der Transformator, Übertrager

a) Leerlauf

$$\hat{\Phi} = \frac{\sqrt{2} \cdot U_1}{2\pi \cdot f \cdot N_1}$$

$$u_2 = \frac{\sqrt{2} \cdot U_1 \cdot N_2}{N_1} \sin(\omega \cdot t)$$

Verhältnis Primär- zu Sekundärspannung $\left| \frac{U_1}{U_1} \right| = \frac{N_1}{u} = \frac{u}{u} \right|$ ü...Übersetzungsverhältnis des Trafos

$$\frac{U_1}{U_2} = \frac{N_1}{N_2} = \ddot{u}$$

b) Transformator bei Belastung

$$\frac{I_1}{I_2} = \frac{N_2}{N_1} = \frac{1}{\ddot{u}}$$

Übertrager zur Transformation von Widerständen

$$R_E = \ddot{u}^2 \cdot R_2$$

m und n sind Maßstabsfaktoren

7. Ortskurven

Ortskurven gelten nur für den stationären (quasistationären) Zustand.

Unterscheidung von zwei Hauptgruppen von Ortskurven:

a) Spannungs- und Widerstandsortkurven

 $I = konst. \Rightarrow U \sim Z \Rightarrow$ gleiche Ortskurven für U und Z

b) Strom- und Leitwertortskurven

 $U = konst. \Rightarrow I \sim Y \Rightarrow$ gleiche Ortskurven für I und Y

Maßstäbe sind jeweils verschieden.

7.1. Herleitung einfacher Ortskurven

7.1.1. Komplexe Gleichung der Ortskurven

allgemeine Form von Ortskurven mit einem Parameter

$$\underline{Z}(p) = \frac{\underline{A} + p \cdot \underline{B} + p^2 \cdot \underline{C} + \dots}{\underline{A}' + p \cdot \underline{B}' + p^2 \cdot \underline{C}' + \dots}$$
 p...reeller Parameter von -\infty bis +\infty

 $\underline{A}, \underline{B}, \underline{C}, \dots$ konstante komplexe Größen

 $\underline{A}', \underline{B}', \underline{C}', \dots$

a) Geradlinige Ortskurven

Die Form $Z(p) = A + f(p) \cdot B$ liefert stets eine Gerade als Ortskurve f(p) ist ohne Einfluß auf die

Lage der Ortskurve und bestimmt nur die Unterteilung der Parameterskala.

b) Ortskurve höherer Ordnung

Parabel:

$$\underline{Z}(p) = \underline{A} + \underbrace{p \cdot \underline{B} + p^2 \cdot \underline{C}}$$

7.2. Die Inversion

Inversion:

Bildung des Kehr- (Reziprok-) wertes

7.2.1. Inversion eines konstanten Zeigers

Verfahren: Spiegelung am Einheitskreis

$$\overline{A}^2 = \frac{1}{m \cdot n}$$
 \overline{OA} ...Radius des Inversionskreises

7.2.2 Inversion einer Geraden

$$\underline{Z}(p) = \underline{A} + p \cdot \underline{B} \Rightarrow \underline{Y} = \frac{1}{\underline{Z}(p)} = \frac{1}{\underline{A} + p \cdot \underline{B}} \Rightarrow \text{Kreis}$$

zu bestimmen sind: Die Lage des Mittelpunktes des Kreises und dessen Radius Konstruktion:

- 1. Zeichnen der Nennergeraden Z(p) mit Bezifferung nach p
- 2. Spiegelung von Z(p) an der reellen Achse ergibt $\underline{Z}^*(p) \Rightarrow$ Bezifferungsgerade
- 3. Zeichnen der Normalen auf $Z^*(p)$ und Z(p) durch den Koordinaten Ursprung ergibt \overline{ON}_2 und \overline{ON}_1

4. Inversion der Normalen \overline{ON}_1 ergibt $d = \overline{ON}_3$, $d = \frac{1}{\overline{ON}_1} = \frac{1}{\overline{ON}_2}$; der Kreismittelpunkt M liegt bei $\frac{d}{2}$ auf der Verbindungslinie \overline{ON}_2 .

5. Zeichnen der Bezifferungshilfslinien für p vom Koordinatenursprung durch $Z^*(n)$ und Übertragen der Bezifferung von $\underline{Z}^*(p)$ auf die Kreisschnittpunkte

Merksätze zur Inversion:

- 1) Die Inversion einer Geraden durch den Nullpunkt ergibt wieder eine Gerade durch den Nullpunkt (Nullpunkt = Koordinatenursprung).
- 2) Die Inversion einer Geraden, die nicht durch den Nullpunkt geht, ergibt einen Kreis durch den Nullpunkt.
- 3) Die Inversion eines Kreises, der nicht durch den Nullpunkt geht, ergibt wieder einen Kreis, der nicht durch den Nullpunkt geht. (Kreis in allgemeiner Lage)

Die Inversionssätze sind umkehrbar!

7.3. Inversion eines Kreises in allgemeiner Lage

$$\underline{Z}(p) = \underline{L} + \underline{N} \frac{1}{\underline{A} + p \cdot \underline{B}} \qquad k_{\min} = \frac{1}{A_{\max}} \qquad k_{\max} = \frac{1}{A_{\min}}$$

$$k_{\min} = \frac{1}{A_{\max}} \qquad k_{\max} = \frac{1}{A_{\min}}$$

Durchmesser des invertierten Kreises: $k_{\text{max}} - k_{\text{min}}$

Der Mittelpunkt des invertierten Kreises liegt bei $k_{\min} + \frac{k_{\max} - k_{\min}}{2}$

7.4. Umwandlung Widerstand ⇔ Leitwert

$$R \cdot R_p = Z^2 \qquad X \cdot X_p = Z^2$$

$$G \cdot \frac{1}{R} = Y^2 \qquad -B \cdot \frac{1}{X} = Y^2$$

7.5. Das Kreisdiagramm

Das Kreisdiagramm ist die Abbildung eines kartesischen Koordinatensystems in ein aus orthogonalen Kreisen gebildetes Koordinatensystem.

8. Verlustbehaftete Bauelemente

8.2. Eisenverluste

Eisenverluste:
$$P_H = A_h \cdot f \cdot V_{Fe}$$
 Wirbelstromverluste: $P_{Wi} \sim f^2 \cdot \hat{B}^2$

8.3. Spule mit Verlusten

$$Q = \frac{1}{\tan \varepsilon} = \frac{\omega \cdot L}{R_W}$$
 Q...Spulengüt

Spule mit Eisenkreis

$$R_{Fe} = \frac{\underline{U}_L}{\underline{I}_{Fe}} = \frac{U_L^2}{P_{Fe}}$$

 $R_{Fe} = \frac{\underline{U}_L}{\underline{I}_{Fe}} = \frac{U_L^2}{P_{Fe}}$ R_{Fe} ...Ersatzwiderstand der Eisenverluste

8.4. Kondensator mit Verlusten

$$C \cdot R_{isol} = \frac{\varepsilon}{\chi} \qquad \tan \delta = \frac{G_D}{\omega \cdot C}$$

9. Resonanzkreise

9.1. Serienresonanz

$$\omega_r = \frac{1}{\sqrt{L \cdot C}}$$

$$f_r = \frac{1}{2\pi\sqrt{L \cdot C}}$$

$$Q_S = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$Q_S = \frac{U_L}{U} = \frac{U_C}{U} \text{ bei } f_r$$

O_c...Gütezahl

Bandbreite ω_B für kleine Bandbreiten ω_B gilt: $\omega_B = \frac{R}{L} = \frac{\omega_r}{Q_S}$ $d_S = \frac{1}{Q_S}$

t:
$$\omega_B = \frac{R}{L} = \frac{\omega_r}{Q_S} d_S = \frac{1}{Q_S} d_S$$
 Dämpfung des Kreis

9.2. Parallelresonanz

$$Q_P = R_P \sqrt{\frac{C}{L}} \qquad \omega_B = \frac{\omega_r}{Q_P}$$

9.3. Ermittlung der Resonanzfrequenz bei beliebigen Aufbau des Netzwerkes

10. Wechselstrombrücken

Abgleichbedingungen
$$\overline{\frac{Z_1}{Z_2}} = \overline{\frac{Z_2}{Z_2}}$$

Abgleichbedingung für Beträge: $\frac{Z_1}{Z_2} = \frac{Z_3}{Z_4}$ Abgleichbed. für Phasenwinkel: $\phi_1 - \phi_2 = \phi_3 - \phi_4$

Maxwellbrücke
$$R_1 = \frac{R_2 \cdot R_3}{R_4}$$
 $L_1 = \frac{L_2 \cdot R_3}{R_4}$

Maxwell-Wien-Brücke
$$R_1 = \frac{R_2 \cdot R_3}{R_4}$$
 $L_1 = C_4 \cdot R_2 \cdot R_3$

Wienbrücke
$$C_1 = C_3$$
 $G_1 = R_3 \cdot \omega^2 \cdot C_3^2$ $\delta_1 = \tan \delta_1 = R_3 \cdot \omega \cdot C_3$

11. Periodische nichtsinusförmige Vorgänge

Fourier-Reihe
$$y(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(n \cdot \omega t) + \sum_{n=1}^{\infty} B_n \sin(n \cdot \omega t)$$

 A_n , B_n ...Amplituden von Grund und Oberschwingungen

$$y(t) = A_0 + \sum_{n=1}^{\infty} C_n \cos(n \cdot \omega t - \varphi_n) \qquad C_n = A_n^2 + B_n^2 \qquad \varphi_n = \arctan \frac{B_n}{A_n}$$

11.1. Berechnung der Fourier-Koeffizienten A_0, A_n, B_n

$$A_{0} = \frac{1}{T} \int_{0}^{T} f(t) \cdot dt$$

$$A_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} f(\omega t) \cdot d\omega t$$

$$A_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} f(\omega t) \cdot d\omega t$$

$$A_{0} = \frac{1}{T} \int_{0}^{2\pi} f(\omega t) \cdot d\omega t$$

$$A_{0} = \frac{1}{T} \int_{0}^{2\pi} f(\omega t) \cdot \cos(n \cdot \omega t) \cdot d\omega t$$

$$A_{0} = \frac{1}{T} \int_{0}^{2\pi} f(\omega t) \cdot \sin(n \cdot \omega t) \cdot d\omega t$$

$$A_{0} = \frac{1}{T} \int_{0}^{2\pi} f(\omega t) \cdot \sin(n \cdot \omega t) \cdot d\omega t$$

11.2. Sonderfälle beim zeitlichen Verlauf der mehrwelligen Vorgänge

- a) positive Fläche = negative Fläche $\Rightarrow A_0 = 0$
- b) <u>Halbwellensymmetrie</u> $f(\omega t + \pi) = -f(\omega t) \Rightarrow \text{nur } \underline{\text{ungerade}}$ Oberschwingungen Integration über π ausreichend, Ergebnis mit 2 multiplizieren
- c) <u>Ursprugssymmetrie</u> $f(\omega t) = -f(-\omega t) \Rightarrow$ enthält nur Sinusglieder

Integration über π ausreichend, Ergebnis mit 2 multiplizieren

- d) Kombination von b) und c) \Rightarrow Sinusglieder ungerader Ordnungszahl
- e) Symmetrie bezüglich einer vertikalen Achse $f(\omega t) = f(-\omega t) \Rightarrow$ enthält nur Cosinusglieder

Integration über π ausreichend, Ergebnis mit 2 multiplizieren

11.3. Das Frequenzspektrum

Das Frequenzspektrum gibt die Anzahl der in einem mehrwelligen System enthaltenen Schwingungen, sowie ihren prozentualen Anteil an der Grundschwingung an.

11.4 Mittelwerte und Leistung periodischer nichtsinusförmiger Verläufe

arithmetischer Mittelwert
$$\bar{l} = \frac{1}{2\pi} \int_{0}^{2\pi} i(\omega t) \cdot d\omega t = I_{o}$$
Effektivwert
$$I = \sqrt{I_{0}^{2} + I_{1}^{2} + I_{2}^{2} + I_{3}^{2} + ... + I_{n}^{2}}$$

I ... Effektivwert der Gesamtschwingung

 I_0 ...Gleichanteil I_1, I_2, I_3, \dots ...Effektivwert der Grund- und Oberschwingungen

11.5.Verzerrungen

11.5.1. Lineare Verzerrungen

Ergebnis: L glättet, d.h. es mindert die Verzerrung C verstärkt die Verzerrung

Frequenzverhalten einfacher RC-Netzwerke

Reihenschaltung von Widerstand und Kondensator

$$\overline{U}$$
...Gesamtspannung U_C ...Spannung an Kondensator U_R ...Spannung an Widerstand

$$\frac{\underline{\underline{U}}_{C}}{\underline{\underline{U}}} = \frac{1}{1 + j \cdot \omega \cdot C \cdot R} = f(\omega)$$
Betragsverhältnis
$$\underline{U}_{C} = 1$$

$$\frac{U_C}{U} = \frac{1}{\sqrt{1 + (\omega \cdot C \cdot R)^2}} = f(\omega)$$

 $\underline{\text{Phasenverschiebung zwischen}}\;\underline{U}\;\underline{\text{und}}\;\underline{U}_{C}$

$$\varphi = \arctan(-\omega \cdot C \cdot R)$$

Grenzfrequenz f_{or} (Blind- und Wirkwiderstand sind betragsmäßig gleich)

$$\overline{\sigma}_{gr} = \frac{1}{R \cdot C} \Rightarrow f_{gr} = \frac{1}{2\pi \cdot R \cdot C}$$
 bei $f = f_{gr}$ ist $\frac{U_C}{U} = \frac{1}{\sqrt{2}}$ und $\varphi = -45$

Das RC-Netzwerk hat Tiefpaßverhalten.

Ortskurve: Halbkreis im 4. Quadranten.

$$\frac{U_R}{U} = \frac{R}{\sqrt{R^2 + \left(\frac{1}{\omega \cdot C}\right)^2}} = f(\omega)$$

Phasenverschiebung zwischen \underline{U} und \underline{U}_{R}

$$\varphi = \arctan \frac{1}{\omega \cdot C \cdot R}$$

Grenzfrequenz bei
$$f = f_{gr}$$
 ist $\frac{U_R}{U} = \frac{1}{\sqrt{2}} = -3 \, \text{dB}$ und $\varphi = 45$

Das RC-Netzwerk hat Hochpaßverhalten.

Ortskurve: Halbkreis im 1. Quadranten.

11.5.2. Nichtlineare Verzerrungen

Gehorcht die Kennlinie i = f(u) einer Gleichung n-ten Grades, so treten Oberschwingungen bis zum n-fachen der Grundschwingung auf.

Klirrfaktor

$$k = \frac{\text{Effektivwert aller Oberschwingungen}}{\text{Effektivwert der Gesamtschwingung}}$$

$$k = \sqrt{\frac{U_2^2 + U_3^2 + ... + U_n^2}{U_1^2 + U_2^2 + U_3^2 + ... + U_n^2}}$$

$$U_1 \dots \text{Effektivwert der Grundschwingung}$$

$$U_2 \dots \dots \text{Effektivwert der Oberschwingung}$$